
�

1 Introduction

1.1	 Background

Effective thermal and fluid system design often requires a creative, iterative, and 
open-ended process to meet multifaceted objectives of an engineering system. It pro-
vides concepts and specifications that will optimize the function, performance, and 
value of a system, for the mutual benefit of users and manufacturers. Some common 
tools for such design include computational fluid dynamics (CFD), computer-aided 
design (CAD), measurement techniques such as particle image velocimetry (PIV), 
and others. This book focuses on how entropy and the Second Law of Thermody-
namics can enhance conventional design methods by providing an iterative meth-
odology to reduce entropy production in a thermal system, thereby improving its 
energy efficiency.

Industrial design methodologies were first adopted widely in the late 1930s 
and early 1940s, with prominent industrial designers such as Raymond Loewy, 
Norman Bel Geddes, and Henry Dreyfuss. The importance of their methods has 
risen steadily since that time for various reasons. Economics has been a key factor 
because a manufacturer’s profitability depends on the product price in the marketplace 
and manufacturer’s cost to produce it. As manufactured products become a com-
modity, cost savings are more difficult, and better industrial designs are needed to 
allow a product to gain higher profit margins. Also, good engineering designs can 
allow products to achieve certain attributes that are important for advertising and 
marketing purposes.

With increased worldwide awareness that the world’s fossil fuel resources are 
limited, major efforts have focused on the design of more efficient and environmen-
tally sustainable energy devices and processes. Energy systems are often thoroughly 
scrutinized for possible design improvements. Past conventional technology has gen-
erally detected energy losses on a system-wide or global scale, such as a single loss 
coefficient (i.e., valve loss coefficient). With the current state of this technology, the 
margins for improving the efficiency of existing devices can be relatively small. In 
this book, entropy-based design with local loss mapping is presented as a robust tool 
for reaching higher levels of system efficiency, thereby leading to energy savings in 
various industrial applications.

The fundamental principles governing the design of energy systems are Newton’s 
law of motion and the laws of thermodynamics. Newton’s Second Law of Motion and 
the First Law of Thermodynamics are the cornerstones on which virtually all energy 
systems are built today. The other laws have played a secondary support role. A limita-
tion associated with the First Law of Thermodynamics is that it tracks only the quantity 
of energy. In contrast, the Second Law tracks “quality” of energy, or its work-producing 
potential. Thus, the Second Law has the unique advantage of offering a systematic tool 
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for optimal energy usage and choice of technologies. The unique capabilities of the 
Second Law can be used to scrutinize flow irreversibilities locally, rather than globally. 
In this way, the problem regions can be clearly identified by the high entropy produc-
tion rates, so designers can focus on those regions for improvements. A useful analogy 
is a sick patient telling a doctor that he or she is sick, without knowing the part of the 
body that is causing the ailment. Doctors can often use diagnostic tools to pinpoint the 
source. Similarly for a complex engineering system, large rates of entropy production 
within a device can identify problematic areas of concern because a commonly desired 
goal of devices is improving the efficiency through reduced entropy production. This 
goal is generally desired regardless of application, flow conditions, system parameters, 
and so on.

Local exergy, or the work potential of a device, can be more readily interpreted 
physically than entropy production because it contains the same dimensional units 
as energy. It can be related directly to economic indicators. For example, multiplying 
the local cost of electricity (per kilowatt hour) by exergy destroyed by moving fluid 
through a valve over a year can indicate a yearly expense of wasted energy therein. 
This expense can be interpreted directly in terms of lost revenue. Thus, an economic 
framework can be based on local entropy production rates or exergy losses in a fluids 
engineering system.

Furthermore, there exists a need for a standard metric from which the energy effi-
ciency of all devices can be characterized. For example, fuel efficiency in a car is 
defined differently from that of a water heater’s efficiency, while still different than 
how a diffuser’s efficiency is defined, and so on. As a result, it is difficult for regula-
tory and government agencies to identify a standard method for identifying the energy  
wasted by a given device. Entropy production gives a single, measurable quantity that 
is directly related to the efficiency of any device that transforms energy because it char-
acterizes degradation of useful (mechanical) energy to less useful (internal) energy.

The utility of entropy and the Second Law have been widely documented in 
various disciplines, ranging from engineering fluid mechanics, to information and 
coding theory, economics, and biology. It will be emphasized frequently throughout 
this book how entropy serves as a key parameter in achieving the upper limits of 
performance and quality in many technologies. It can shed new light on various 
flow processes, ranging from optimized flow configurations in an aircraft engine to 
highly ordered crystal structures (low entropy) in a turbine blade, and other applica-
tions (Bejan, 1996). It is likely not possible to find any other law of nature, wherein 
a proposed violation would bring more skepticism than violation of the Second Law 
of Thermodynamics.

Consider the implications of the Second Law in the thermal design of aircraft 
subsystems, involving work potential (Camberos, 2000a). Past authors have observed 
that there is no current systematic method for tracking work potential usage in the 
design of aircraft subsystems (Roth and Mavris, 2000). Exergy and entropy cal-
culations can identify the loss of work potential within each subsystem and fluid 
flow process during an aircraft’s operation. These calculations can enable design-
ers to identify key locations that incur the most significant losses. Moorhouse and 
Suchomel (2001) have discussed how flow exergy provides a unifying framework 
and set of metrics to more effectively analyze aircraft subsystems.
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Various analytical methods have been developed over the past several decades 
for Second Law analysis. Notable examples include (i) estimation of the theoretical 
ideal operating conditions of a proposed design (called exergy analysis, or EA) and 
(ii) minimization of the lost available work or entropy generation by design modi-
fications (called entropy generation minimization, or EGM; Bejan, 1996). Exergy 
quantifies the capacity of an energy source to perform useful work. It is a measure 
of the maximum capacity of an energy system to perform useful work as it pro-
ceeds to a specified final state in equilibrium with its surroundings. Exergy analysis 
focuses on closing the gap between maximum exergy and the actual work delivered 
by a device, through careful examination of the thermodynamic processes involved 
in a series of energy conversion steps (Dincer and Rosen, 2004). Subsequently, the 
exergy values at each point are used to evaluate Second Law efficiencies, which 
quantify the magnitude of irreversibilities (or exergy destruction) associated with 
the energy conversion process (Bejan, 1997; Rosen and Dincer, 2004). The method 
of EGM involves fluid mechanics, heat transfer, material constraints, and geometry, 
in order to obtain relationships between entropy generation and the optimal con-
figuration. Typically, a functional expression for the entropy production in a process 
is derived (Poulikakos and Bejan, 1982; Zubair et al., 1987). Then the extremum 
of the derived expression that guarantees a minimum entropy generation is deter-
mined by methods of calculus. Because analytical methods are often limited to 
simplified geometries, this book extends analytical EGM to numerical and experi-
mental methods.

Opportunities for design optimization based on the Second Law can be enhanced 
through CFD as a design tool for complex problems and geometries. Entropy produc-
tion can be obtained by postprocessing of the predicted flow fields (Sciubba, 1997). 
Many industrial problems in metallurgy, power generation, energy storage, aerody-
namics, and other applications have been successfully solved by CFD. A designer can 
choose an optimum design from many possible alternatives at a remarkable speed 
using CFD. Combined EGM with CFD provides an emerging technology with prom-
ising potential for design optimization of practical industrial problems.

For example, an application involving the design of air-cooled gas turbine blades 
was presented by Natalini and Sciubba (1999). The full Navier–Stokes equations of 
motion for turbulent viscous flow and the energy equations were solved with a finite 
element approach and a two-equation turbulence closure. By identifying the entropy 
generation rates corresponding to the fluid friction and heat transfer irreversibility, 
the authors determined which configurations had minimal thermodynamic loss in 
a turbine cascade. The computed flow field for pitched turbine blades (Kresta and 
Wood, 1993) can be postprocessed to identify regions of high local losses, thereby 
guiding engineers in local redesign of the blade profile to reduce such losses. Pre-
dictions of entropy production have been used in various other applications such as 
free convection in inclined enclosures (Baytas, 2000), mixed convection in a verti-
cal channel with transverse fin arrays (Cheng et al., 1994), laminar and turbulent 
flow through a smooth duct (Demirel, 1999; Sahin, 2000, 2002), flow in concen-
tric cylinder annuli with relative rotation (Mahmud and Fraser, 2002), and diffusers 
(Adeyinka and Naterer, 2005). These studies are examples of how entropy produc-
tion computations can successfully complement CFD technology.
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Industrial flow problems usually involve turbulence. Numerical predictions 
of entropy production in a turbulent flow were given by Moore and Moore (1983). 
Moore’s work was the first documented effort to develop a numerical model for tur-
bulent entropy production. The Moore model assumes that turbulent fluctuations of 
the heat flux and viscous dissipation in the positive definite entropy equation can be 
modeled by the addition of a turbulent conductivity and turbulent viscosity to the 
molecular conductivity and viscosity, respectively. It has been used to predict the 
mean local entropy production in a bent elbow (Moore and Moore, 1983), turbulent 
plane oscillating jet (Cervantes and Soloris, 2002), and a jet impinging on a wall 
(Drost and White, 1991). A finite volume method for predicting the mean viscous 
dissipation and entropy production in turbulent flows, based on the time-averaged 
turbulence equations, was described by Kramer-Bevan (1992).

In addition to the previous physical characteristics of entropy production, it 
can be interpreted alternatively in computational terms. Physical processes of 
viscous dissipation and heat transfer lead to entropy production. Past Second 
Law studies have shown how numerical procedures may also produce or destroy 
entropy, due to discretization errors, artificial dissipation, and nonphysical 
numerical results (Cox and Argrow, 1992; Naterer, 1999). Solutions of differen-
tial equations that do not satisfy an “entropy condition” may be characterized by 
a lack of uniqueness, oscillations, and other unusual behavior (Adeyinka, 2002; 
Hughes et al., 1985; and others). Cox and Argrow (1992) computed local entropy 
production with a finite difference method for compressible flow. Jansen (1993) 
and Hauke (1995) applied an entropy-based stability analysis to turbulent flows. 
Jansen (1993) showed that the exact Navier–Stokes equations for compressible 
flow could lead to an entropy inequality, through a linear combination of equa-
tions. The study determined what constraints the Second Law places on modeling 
of the averaged equations by linking entropy production to the solution variables. 
A major difficulty with numerical predictions can be the inability to ascertain 
error bounds. Solutions can be very sensitive to various parameters associated 
with the numerical algorithm (Naterer, 1999). This can make it difficult to judge 
the extent to which the computed results agree with reality. In numerical predic-
tions of complex industrial flows, limited or no experimental data may be avail-
able for validation purposes. In these cases, checking where predicted entropy 
production rates are positive (realistic) or negative (unrealistic) is a valuable tool 
for verification.

1.2	 Governing Equations of Fluid Flow	
and Heat Transfer

1.2.1	 Vector and Tensor Notations

In this book, conventional notations for vectors and tensors will be used. A vector 
will be denoted by boldface font or a vector hat. A unit vector is a vector of unit 
magnitude. For example, i and j refer to the unit vectors in the x and y coordinate 
directions, i.e., (1, 0) and (0, 1), respectively. The symbol | v | designates the magnitude 
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of the indicated vector. When performing operations with matrices in this book, 
matrices are contracted when their individual entries are multiplied by each other 
and summed. For example, if

	
AA BB=








 =











a a

a a

b b

b b
11 12

21 22

11 12

21 22

;
	

(1.1)

then

	 AA BB: 11 11 12 12 21 21 22 22= + + +a b a b a b a b
	

(1.2)

Tensors are generalized notations for scalars (rank of zero), vectors (rank of 1), 
matrices (rank of 2), and so on. A tensor is denoted by a variable with subscripts. For 
example, aij represents the previously described matrix, where the range of subscripts 
is i = 1, 2 and j = 1, 2. When tensors use indices in this way, the notation is called 
indicial notation. The summation convention of tensors requires that repetition of 
an index in a term denotes a summation with respect to that index over its range. For 
example, in the previously cited case (dot product) involving two vectors,

	 u v u v u vi i = +1 1 2 2 	 (1.3)

The range of the index is a set of specified integer values, such as i = 1, 2 in the previ-
ous equation. A dummy index refers to an index that is summed, whereas a free index 
is not summed. The rank of a tensor is increased for each index that is not repeated. 
For example, aij contains two nonrepeating indices, thereby indicating a tensor of 
rank 2 (i.e., matrix).

1.2.2	 Mass and Momentum Equations

The governing equations of fluid flow and heat transfer can be expressed in either 
vector or tensor notations. For two-dimensional flows, the mass conservation equa-
tion is given by

	

∂
∂
+ ∂
∂
+ ∂
∂
=ρ ρ ρ

t

u

x

v

y

( ) ( )
0

	

(1.4)

For incompressible flows, this equation may be simplified wherein that the diver-
gence of the velocity field (∇ ⋅ v) equals zero. The divergence of velocity may be 
interpreted as the net outflow from a control volume (fully occupied by fluid), which 
must equal zero at steady state, because any inflows are balanced by mass outflows.

The momentum equations represent a form of Newton’s law. Forces on a fluid 
element like pressure and shear forces balance the particle’s mass times its accelera-
tion (i.e., total, or substantial derivative of velocity). The x-direction and y-direction 
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momentum equations can be expressed as

	

∂
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∂
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= ∂
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(1.5)
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by

	
(1.6)

where Fb refers to a body force.
These equations cannot be solved in this form because there are more unknowns 

(i.e., stresses, velocities, and pressure) than available equations. As a result, addi-
tional relations called constituitive relations between the stresses and velocities are 
needed. In Newtonian fluids, the stresses are proportional to the rate of deformation 
(or strain rate). For incompressible flows of Newtonian fluids, we have the follow-
ing two-dimensional constitutive relations for stresses in terms of the pressure and 
velocity fields:

	

σ µxx p
u

x
= - + ∂

∂
2

	
(1.7)

	

σ µyy p
v

y
= - + ∂

∂
2

	

(1.8)
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∂
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
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=

	

(1.9)

Substituting these constitutive relations into the previous x-momentum equation and 
using continuity (mass conservation) to rewrite the left side,

	

ρ ρ ρ µ∂
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(1.10)

together with a similar y-momentum equation represents the two-dimensional 
Navier–Stokes equations. Analytical solutions of these equations are usually limited 
to simplified geometries because of the difficulties inherent in the nonlinear and 
coupled (with continuity equation) nature of the equations.

Fluid flow regions are generally classified as viscous or nearly inviscid regions. 
In a viscous region, such as a boundary layer, frictional forces are significant. A 
boundary layer refers to the thin diffusion layer near the surface of a solid body, 
where the fluid velocity decreases from its freestream value to zero at the wall over 
a short distance. In contrast to viscous regions, frictional forces are often small in 
comparison to fluid inertia in regions far from a surface or boundary layer. The 
Euler equations are a special form of the Navier–Stokes equations for frictionless 
(or inviscid) flow. An inviscid fluid refers to an idealized fluid with no viscosity. In 
this situation, the terms involving viscosity are absent from the governing equations. 
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The fluid motion can be characterized as a potential flow, whereby the reduced gov-
erning equations can be written in terms of a scalar potential function.

1.2.3	 Energy Transport Equations

In addition to the fluid flow equations, energy is another transported quantity of key 
importance in the analysis of thermal and fluid systems. The mechanical energy 
equations can be obtained by multiplying each ui momentum equation by ui (where 
i = 1, 2 for two-dimensional flows) and adding them together. Using the substantial 
derivative notation, we obtain

1
2

2 2D

Dt
u v u

p

x
v

p

y
u

x
u

y
vxx yx( )+ = - ∂

∂
- ∂
∂
+ ∂
∂
+
∂
∂
+τ τ ∂∂
∂
+
∂
∂
+ +

τ τxy yy
x yx

v
y

uF vF
 

		  (1.11)

Using the product rule and generalizing to a vector notation, the following mechani-
cal energy equation is obtained:

             

1
2

( ) ( ) :2ρ τ τD

Dt
V pv p v( ) [ ] [ ]= - ∇ ⋅ - ∇ ⋅ + ∇ ⋅ ⋅ - ∇ + ⋅vv vv vv FFFF

 	
(1.12)

where V u v= +2 2  refers to the total resultant magnitude of the velocity. The first 
term (left side) represents the rate of increase of kinetic energy of a fluid element 
with respect to time. On the right side, the second term gives the flow work done by 
pressure on the differential control volume to increase its kinetic energy. The third 
term represents an energy sink due to fluid compression in the mechanical energy 
equation, and it becomes zero for incompressible flows. The difference between the 
fourth and fifth terms on the right side gives the net fluid work done by viscous 
stresses to increase the kinetic energy of the fluid within the control volume. The lat-
ter portion represents work lost through viscous dissipation, which is a degradation 
of mechanical energy into internal energy through viscous effects. This viscous dis-
sipation is represented by t: ∇ v, which refers to the viscous stress tensor contracted 
with the velocity gradient.

For two-dimensional incompressible flows of a Newtonian fluid, it can be shown 
that the viscous dissipation term can be written as

	

τ µ µ: 2
2 2
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∂
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∂
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2

µΦ
	

(1.13)

where Φ refers to the positive-definite viscous dissipation function. This function 
is greater than or equal to zero. As a result, the conversion of mechanical energy 
into internal energy through viscous dissipation is an energy sink in the mechanical 
energy equation. Thus, mechanical energy is not conserved, but instead a portion 
of this energy is degraded and lost to internal energy through viscous dissipation. 
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It is degraded in the sense that a certain quality of energy is lost in the irreversible 
transformation, as internal energy normally has less ability than kinetic energy to 
perform useful work.

The conservation of total energy (internal plus mechanical energy) is called the 
First Law of Thermodynamics. Performing a total energy balance on a differential 
control volume within the fluid stream, it can be shown that the total energy equation 
can be written as

	
ρ τD

Dt
e V q pv v F v Sˆ ( )+


 = -∇ ⋅ - ∇ ⋅ - ⋅ + ⋅ +1

2
2 &

	
(1.14)

where ê refers to internal energy and S is a source term. The rate of increase of total 
energy within the control volume equals the rate of energy addition by conduction, 
plus work done by pressure, viscous and external forces, plus internal energy gener-
ated per unit volume ( &S ).

The internal energy equation can be derived by subtracting the mechanical 
energy equation from the First Law (total energy equation). Performing this subtrac-
tion and writing the results in a general vector form, we have

	

ρ τDe
Dt

q p v v S
ˆ

:= -∇ ⋅ - ∇ ⋅ + ∇ + &

	
(1.15)

where the fourth term (right side) refers to the viscous stress tensor contracted with 
the velocity gradient. It represents an internal energy source because it arises from 
the conversion of mechanical energy to internal energy through viscous dissipation. 
In the thermal energy equation, viscous dissipation represents an energy source, 
which corresponds to the energy sink previously observed in the mechanical energy 
equation. In other words, its magnitude is identical, but its sign changes in transpos-
ing from the mechanical to internal energy equations.

1.3	 Mathematical Properties of Entropy and Exergy

Numerous past studies have examined the significance of exergy as a measure of 
work potential or maximum useful work (Boehm, 1989b, 1992). A common aspect 
in all of these analyses is the identification of exergy with useful work potential. 
For example, Szargut et al. (1988) define exergy as “the amount of work obtainable 
when some matter is brought to a state of thermodynamic equilibrium.” Similar 
definitions were documented by Bejan (1996) and Kotas (1985). Although engineers 
have accepted the capacity to do work as a measure of quality of energy, this does 
not invalidate another, less anthropomorphic approach. By conceptualizing “exergy” 
as a distance functional, one eliminates the need to introduce additional terms also 
found in the literature (e.g., “anergy,” “essergy,” etc.) or to fragment exergy into 
multiple forms as often done with energy. Concise and critical reviews of the origins 
and history of exergy have been reported by Bejan (1996),  Haywood (1974), Kotas 
(1985), and Szargut et al. (1988).
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The previous section has outlined the governing equations for conserved vari-
ables of mass, momentum, and total energy. In this section, entropy and the Sec-
ond Law will be formulated, particularly fundamental properties associated with 
the nonconserved variables of entropy and exergy. Thermodynamics began as the 
science of heat, intended to provide extended mechanics that would account for a 
common experience, namely, that doing work on a body sometimes makes it hot-
ter, and sometimes heating a body causes it to do work (Truesdell, 1985). Common 
experience shows that mechanical action does not always result in a mechanical 
response, so we need to add the concept of heating alongside the concept of working 
or power. The Second Law is often expressed in terms of “work potential” or exergy. 
The balance of exergy equation represents a synthesis of the First and Second Laws. 
Exergy places all thermodynamic processes in a given system on the same basis by 
providing a common reference and metric. This section examines the essence of the 
Second Law of Thermodynamics as a statement involving the existence of entropy, 
with particular mathematical properties, from which a corresponding statement for 
the existence of exergy follows. It will be shown that exergy represents an abstract, 
mathematical distance functional. The concept of exergy will be interpreted as a 
thermodynamic functional representing the distance of a given system from the state 
of equilibrium at a reference state.

1.3.1	 Concavity Property of Entropy

The Second Law of Thermodynamics represents a natural foundation for thermo-
physical processes. The concept of entropy, however, is often viewed as abstract. 
A fundamental feature of the Second Law reflects a concavity property of entropy 
(Camberos, 2000a). Given a set of thermodynamic variables, ξ and ζ, there exists a 
functional, entropy, S = S (ξ,  ζ) such that S is a concave function of its arguments. 
This framework can be useful to unify various formulations of the Second Law, 
including the principle of nonnegative entropy generation itself (Lavenda, 1991).

Consider an example of a rigid material body at some temperature T immersed 
in a thermal reservoir at temperature T0 (e.g., a hot rock inside a cold room). Suppose 
T  >  T0 and we let the cooling process proceed from the initial time, t, to t0 when 
the body reaches thermodynamic equilibrium with its surroundings. The transfer of 
energy as the body cools equals

	 t

t

Qdt U U
0

0∫ = -
	

(1.16)

where U0 = U (T0) at a final time t0 and U = U (T) at the initial time t. The variables 
Q and U refer to heat transfer rate and internal energy, respectively.

The Second Law of Thermodynamics requires that entropy is produced, but 
never destroyed, in an isolated system. Thus, Sgen ≥ 0 for an isolated system, where 
Sgen refers to the entropy generation. In the current example, the entropy flow associ-
ated with heat transfer is –Q/T0, so the entropy balance equation is

	

S S S
T

Q dt
t

t

gen = - - ∫0
0

1 0

	
(1.17)
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where S = S(T) and S0 = S(T0). Substituting Equation 1.16 into Equation 1.17,

	
S S S

T
U Ugen = - - -0

0
0

1
( )

	
(1.18)

To write the change of energy in terms of temperature, we can use the definition of 
the specific heat (CV  = ∂U/∂T). The entropy generated during the cooling process is 
then

	
S S S

C

T
T TV

gen = - - -0
0

0( )
	

(1.19)

Using standard thermodynamic relations between the specific heat and entropy 
(CV/T = ∂S/∂T), the expression for entropy generation becomes

	
S S S

S

T
T Tgen = - - ∂

∂
-0

0
0( )

 	
(1.20)

This expression indicates a concavity property of entropy as a function of T.
To clarify the meaning of the concavity property, consider some arbitrary func-

tion F = F (X) such that F′′ < 0, where the inequality indicates that F is a concave 
function of its argument. Integration by parts requires

	

- - ′′ = - - ′ -∫ ( ) ( ) ( ) ( ) ( )(X X F X dX F X F X F X X
X

X

1 2 1 2 2
1

2

XX1)
	

(1.21)

The result on the right-hand side has a geometric interpretation. Figure 1.1 illustrates 
the right side of the equation with a vertical line. Geometrically, we have

	
F X F X F X X X( ) ( ) ( )( )2 1 2 2 1 0- - ′ - ≥

	
(1.22)

where the equality holds if and only if X2 = X1. Comparing this result with 
Equation 1.20, it can be observed that positive entropy generation (the Second Law) 
is equivalent to asserting the concavity property of entropy when S = S(T).

Consider another example of a simple compressible substance, subject to both 
heat transfer, Q, and work, W, when relaxing to equilibrium with an environment at 
T0, P0, where P0 = P(T0, V0). Solving for the heat flow from an energy balance and 
writing the net compression/expansion work of the gas in terms of pressure and a 
volume difference,

	
Q dt U U P V V= - + -∫ ( ) ( )0 0 0

	
(1.23)
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The entropy balance then becomes

	
S S S

T
U U

P
T

V Vgen = - - - - -0
0

0
0

0
0

1
( ) ( ).

	
(1.24)

Alternatively, by substituting the appropriate thermodynamic relations and using 
Sgen  ≥  0,

	
S S

S
T

T T
S
V

V V0
0

0
0

0 0- - ∂
∂

- - ∂
∂

- ≥( ) ( ) .
	

(1.25)

The inequality asserts the concavity of entropy as a function of T and V. Equality 
holds if and only if (T, V) = (T0, V0).

Exergy represents the maximum work potential when bringing the system to 
equilibrium with its surroundings. In this example, it is given by

	
X T S S C T T P V VO O V O O O= - - - - -( ) ( ) ( ).

	
(1.26)

Standard thermodynamic relations provide

	

C

T

S

T
V = ∂
∂        

P

T

S

V
= ∂
∂ 	

(1.27)

Figure 1.1  Downward concave function (entropy).

S(
T

) 

S(T0) – S(T) – S 0́(T0 – T )

T T0 

S(T0) 
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12	 Entropy-Based Design and Analysis of Fluids Engineering Systems

Multiplying the entropy inequality in Equation 1.24 leads to

	
T S S U U P V V0 0 0 0 0 0( ) ( ) ( ) ,- - - - - ≥

	 (1.28)

where C T TV ( )0 -  can be interchanged with ( )U U0 - . Identifying the left side as exergy 
and taking the time rate of change,

	
& & & &X T S C T P VV= - + +0 0 . 	 (1.29)

Also, from the entropy balance equation for this problem,

	
& & & &S S

S
T

T
S
V

V= + ∂
∂

+ ∂
∂gen .

	
(1.30)

Substituting Equation 1.30 into Equation 1.29 and replacing terms defined by 

∂ ∂ =S U T/ /1  and ∂ ∂ =S V P T/ /  yields

	
& & & &X

T
T

C T P T
P
T

V T SV- -

 - -



 = -1 0

0 0 0 gen..
	

(1.31)

From the definition of exergy, it can be shown that the following thermodynamic 
relations hold:

	

∂
∂
= -





∂
∂
= -




X
V

P T
P
T

X
T

T
T

CV0 0
01; .

	

(1.32)

Because the entropy generation is nonnegative, the previous relations yield

	
& & &X

X
T

T
X
V

V- ∂
∂

- ∂
∂

≤ 0.
	

(1.33)

This result asserts the mathematical property of convexity for X = X (T, V). Thus, the 
concavity of entropy is equivalent to the convexity of exergy.

Figure 1.2 shows an example of exergy as a convex function of temperature. A 
geometric complementary relation exists between entropy and exergy, as shown by 
the concavity inequality for entropy and the line segment that defines exergy (see 
Figure 1.3). Exergy has an absolute minimum at the point of equilibrium. The tan-
gent slope at this point coincides with the horizontal axis of zero exergy. The straight 
vertical line from an arbitrary initial state in Figure 1.2 represents the corresponding 
distance to equilibrium. The distance to equilibrium is represented equally well by 
the vertical line shown in Figure 1.1 (concavity of entropy) or the horizontal line in 
Figure 1.3 (geometric representation of exergy).
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X 
(T

 )

X‚ X́ (T0) = 0

T0 T

X(T )

Figure 1.2  Exergy function as a convex function of T.

S 
(T

)

S0 – S

X CV (T0 – T )

CVT CVT0

Ś (CVT0)

Figure 1.3  Geometric representation of entropy.
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14	 Entropy-Based Design and Analysis of Fluids Engineering Systems

1.3.2	 Distance Functional with Respect to Equilibrium Conditions

In addition to its convexity property, exergy may be interpreted as a thermodynamic 
metric or distance functional. Define a metric, x, based on the Hessian of entropy 
(second-order tensor of derivatives with respect to temperature and volume) and the 
following inner product,

	
( ) ( )x x x S xT

xx, ≡ ⋅ - ⋅0 	 (1.34)

where

	

( )S

S

T

S

T V

S

T V

S

V

xx 0

0

2

2

2

2 2

2

=

∂
∂

∂
∂ ∂

∂
∂ ∂

∂
∂























	

(1.35)

represents the Hessian. The superscript T refers to matrix transpose and

	
x T VT ≡ ,( )

	 (1.36)

represents an algebraic vector of the corresponding thermodynamic variables. The 
inner product of (x, x) results in nonnegative values, as guaranteed by the concavity 
property of entropy. A general mathematical metric can be defined by the following 
distance functional:

	
|| || ( )x x x x- ≡ D ,D /

0
1 2

	 (1.37)

where Dx = x - x0.
To clarify the importance of these equations with respect to exergy, consider the 

construction of the norm || ||x , which requires evaluation of the second-derivative 
terms of the Hessian. Thermodynamic relations for a simple compressible substance 
(Bejan, 1996) give

	

∂
∂
= -

2

2 2

S

T

C

T
V

	
(1.38)

	

∂
∂ ∂

= - -
2

2

1S

T V T
P T

κ
κ β( )

	
(1.39)

	

∂
∂

= - - +






2

2 2

21 2S

V T

P TP

C

C T

C VV

P

Vκ
κ β

	
(1.40)

where

	
β ≡ ∂

∂
1
V

V

T 	
(1.41)
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and

	

κ ≡ - ∂
∂

1
V

V

P 	
(1.42)

represent the volumetric coefficients of thermal expansion and isothermal compress-
ibility of the gas, respectively. Using these definitions to calculate the Hessian yields 
the following inner product:

	

( )x x
C T

H

T
HV

C V

VV

P, = - +








1
2

0

2

0

2

0κ
κ β

	
(1.43)

where H = CVT + P0V.
Consider two cases: an ideal gas and an incompressible substance. For an ideal gas,

	
κ βP T= =1 1

	 (1.44)

and the inner product simplifies to

	
( )x x C

T

T

P V

C T

C P V

C T VV
V

P

V

, =




- +

2

0

0
2 2

0
2

0
2

0 0 	
(1.45)

Simplifying further with the ideal gas equation of state,

	 PV RT= ˆ
	 (1.46)

together with the following relations:

	

C
R

V = -

ˆ

γ 1
        

C
R

P = -
γ
γ

ˆ

1
       

γ ≡ C

C
P

V 	
(1.47)

yields

	
( )

ˆ
ˆx x

R T

T
R

V

V
, =

-




+



γ 1

2

0

2

0 	
(1.48)

where R̂ = mR/M and m, M, and R are the mass, molecular weight, and universal gas 
constant, respectively. The subscript O denotes reference conditions for pressure and 
temperature. Replacing (U, V) with the corresponding differences ( )U U V V- , -0 0  
yields the following square of a true mathematical distance functional,

	

|| ||  
ˆ

ˆx x
R T

T
R

V
V0

2

2

0

2

01
1 1- =

-
-






+ -




γ

	

(1.49)
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Following the same procedure for an incompressible substance, where κ β, → 0, and 
C C CP V, → , yields

	

|| ||x x C
T

T0
2

2

0

1- = -






	

(1.50)

This result of a mathematical distance functional can be directly related with 
exergy. Consider a system near equilibrium conditions and expand the entropy func-
tion in a Taylor’s series. Using the previous definition of xT = (T, V) and neglecting 
higher-order terms,

	

S S
S

T
T T

S

V
V V x x ST

xx≈ + ∂
∂

- + ∂
∂

- + - ⋅0
0

0
0

0 0 0
1
2( ) ( ) ( ) ⋅⋅ -( )x x0

	

(1.51)

Using the definition of exergy from the previous section, entropy derivatives in terms 
of exergy and the previous result for the distance functional, it can be shown that

	
X T x x≈ -1

2 0 0
2|| ||

	
(1.52)

This formulation of exergy as a distance functional with respect to equilibrium con-
ditions provides a more systematic and mathematically rigorous interpretation than 
various definitions of “work potential” in undergraduate textbooks. The previous 
results show that exergy represents a physical measure of the distance from equilib-
rium conditions for a system at some arbitrary state.

The convexity and distance functional properties of exergy have been presented 
here to aid understanding of exergy. The concept of exergy has been interpreted 
through a connection between a system and its environment. Standard textbooks 
often introduce and discuss “availability” or exergy in the context of “a system’s 
potential to do work in a reversible manner.” Many modern texts (such as Cengel 
and Boles, 1989; Müller, 1985) also introduce a number of work terms (reversible 
work, available work, etc.) in an effort to clarify and expand on the subject. However, 
this can lead to more confusion and cluttering of terminology. This situation was 
observed more than 30 years ago (Haywood, 1974a,b). Second Law analyses have 
found well-deserved attention (Szargut et al., 1988), but the cluttering of terminology 
and obscurity in the definitions often remain. By providing fundamental mathemati-
cal properties of exergy as a state variable, this section has provided a valuable alter-
native interpretation.

The Second Law has deep and significant implications for engineering systems. 
As future machines become increasingly complex and sophisticated in their abil-
ity to transform energy into various forms, exergy and the Second Law will have 
an increasingly important role in prescribing their upper limits of performance. 
Since the industrial revolution, the Second Law served only a secondary role by pre-
scribing what the real physical world allowed. Complex machines of the future will 
require a more interconnected relationship, as they press toward the maximum limits 
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of engineering design, precisely where the true power of the Second Law becomes 
evident. Therefore, it is essential that fundamental properties of entropy and exergy 
as state variables are well understood. Systematically developing the foundations of 
the Second Law from the essence of entropy as a concave function of state variables, 
we can advance that concept, together with a simplicity that will make it possible for 
future engineers and scientists to achieve what we can now only imagine.

1.4	 Governing Equations of Entropy	
and the Second Law

The First and Second Laws are physical principles governing all thermophysical 
processes, and the addition of constitutive relations describes the response of various 
classes of materials (Truesdell, 1984, 1985). As discussed in the previous section, 
a general axiom of thermodynamics postulates the existence of a concave thermo-
dynamic variable called entropy. The Second Law then stipulates that the rate of 
entropy generation must be nonnegative in all thermophysical processes, that is, 

gen
&S ≥ .0  The mathematical property of concavity implies certain restrictions on the 
constitutive relations for any material body. This section will use this property to 
develop the governing equations for entropy and the Second Law.

1.4.1	 Closed System

For a closed system, let xk represent independent variables in the constitutive func-
tional relation, such that U = U (xk), W = W (xk), etc. Then the mathematical expres-
sion for the Second Law can be written as

	

& & &S
S

S
k

- ∂
∂
- =∑ ξ
ξ gen 0

	
(1.53)

For S S U V= ,( ), the Second Law becomes

	
& & & &S

S

U
U

S

V
V S- ∂

∂
- ∂
∂

- =gen 0
	

(1.54)

Simplifying this result by using thermodynamic relations for the derivatives 
(CV/T = ∂S/∂T, P/T = ∂S/∂T, and CV = ∂U/∂T) and the First Law,

	
& & &S

Q W

T

P

T
V S- + - - =gen 0

	
(1.55)

Relating the work term and third term yields

	
& &S

Q

T
S- - =gen 0

	
(1.56)
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18	 Entropy-Based Design and Analysis of Fluids Engineering Systems

which represents the entropy balance for a closed system from classical thermo- 
dynamics. This result is well known, although the previous derivation has shown that 
it follows from the concavity property of entropy.

High-quality energy refers to energy from which a great amount of useful work 
can be extracted, so exergy is used to refer to the work potential of that energy. 
Lower quality energy like internal energy can produce less work and therefore 
reflects also lower exergy. Thus, exergy quantifies a qualitative aspect of energy. 
In standard practice, to derive an equation representing the balance of exergy, one 
typically considers a closed system at some uniform arbitrary state, (P, T), rela-
tive to ambient conditions at (P0, T0). To measure the distance of a system from the 
reference or so-called “dead state,” imagine a reversible process whereby the system 
relaxes to thermodynamic equilibrium with the surroundings. The energy balance 
equation simplifies to

	
U U Uin out- = D

	 (1.57)

where the total change in energy is

	
D = - = ∫U U t U t U dt

t

t

( ) ( )2 1

0
&

	
(1.58)

A closed system relaxes to equilibrium with its surroundings through work and heat 
transfer. Integrating the balance of energy equation over time,

	 t

t

t

t

Q dt W dt U
0 0

∫ ∫+ = D
	

(1.59)

with the integral limits defined at an initial time when the system is at (P, T) and the 
final time when the system has reached equilibrium with the surroundings at (P0, T0). 
To replace the heat interaction term with a state variable, one can use the following 
definition of entropy:

	

&S dt
T

Q dt T S S Q dt∫ ∫ ∫= ⇒ - =1

0
0 0( )

	
(1.60)

For the work term, the energy quality directly relates to the useful work extracted. 
It is the maximum amount of work done during a thermodynamically reversible pro-
cess. For a simple compressible substance,

	

W dt PV dt P P Vdt P

W

∫ ∫ ∫= - = - - -& &

1 244 344

&( )0 0

useful

VV dt∫
	

(1.61)

The first term on the right-hand side defines the maximum “useful work” available, 
and the second term represents the work done by the ambient pressure acting on a 
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moving boundary. Substituting the previous two equations into the energy balance,

	
T S S W P V V U U0 0 0 0 0( ) ( )- - - - = -useful 	

(1.62)

where the subscripts indicate the value at reference conditions. Solving for the useful 
work term gives

	
W T S S U U P V Vuseful = - - - - -0 0 0 0 0( ) ( ) ( )

	
(1.63)

which is equivalent to the exergy defined earlier as

	
X T S S U U P V V≡ - - - - -0 0 0 0 0( ) ( ) ( )

	
(1.64)

Dividing by the total mass gives the specific exergy (in other words, exergy per unit 
mass):

	
φ ≡ - - - - -T s s u u P v v0 0 0 0 0( ) ( ) ( )

	 (1.65)

Generalizing to include kinetic and gravitational potential energy requires only that 
we replace u with e, which is the total specific energy given by e u V gz= + +1

2
2 . 

Typically, V0 = 0 and z0 = 0 at the reference state.
With the exergy defined in this manner, one can study the change in exergy when 

the state of a system changes. As a system undergoes a process from one thermo-
dynamic state to another, a corresponding change in exergy occurs. Combining the 
First and Second Laws as expressed by the energy and entropy balance equations 
for a compressible substance of fixed mass leads to an exergy balance equation. In 
integral form, the First and Second Laws become

	
L Q dt W dt U U1 2 1: + = -∫ ∫

	
(1.66)

and

	

L
Q

T
dt S S S2 2 1: + = -∫ gen

	
(1.67)

Combining by taking L T L1 0 2-  gives

	

Q dt W dt T
Q

T
dt T S U U T S S∫ ∫ ∫+ - - = - - -0 0 2 1 0 2 1gen ( )

	

(1.68)

Collecting terms and replacing the right-hand side with equivalent terms using the 
definition of exergy gives

	

1 0
0 2 1 0 2-


 + + -{ } - = -∫ ∫T

T
Q dt W dt P V V T S X( ) gen XX1

	

(1.69)
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Other than a difference in sign on the work term, Equation 1.69 is a typical result 
found in textbooks on elementary thermodynamics (Cengel and Boles, 1989). If we 
identify the first term on the left side as “exergy transfer due to heat interaction” in the 
same sense that we identify entropy transfer due to heat interactions, and the second 
term (in brackets) as the “exergy transfer due to work interaction,” then Equation 1.69 
reduces to the following result:

	
I X XX - = Ddes 	 (1.70)

where Ix is the exergy current due to work and heat transfer and Xdes = T0 Sgen is the 
exergy destruction (called the Gouy–Stodola identity).

Alternatively, it is useful to interpret the quantity expressed by Xdes as the dis-
tance from which the system approaches thermodynamic equilibrium with its envi-
ronment. Recognizing the Second Law through the increase of entropy principle, it 
is required that

	

T S0

0

0

0
gen

Real World

Ideal World

Impossible

>
=
<









	

(1.71)

Because we have associated exergy as equivalent to a measure of work potential, this 
term can be described as “exergy degeneration” or a loss of potential work due to 
real-world, irreversible effects. Entropy generation has a corresponding destruction 
of exergy:

	
X T Sdes gen= 0 	 (1.72)

A system in the real world undergoes spontaneously a process that brings it closer to 
thermodynamic equilibrium with its surroundings.

1.4.2	 Open System

During an unsteady process where a substance goes from an initial (inlet; subscript 
“in”) to a final (exit; subscript “out”) state, the quality of energy changes, and a cor-
responding change occurs in its thermodynamic distance from equilibrium. Com-
bining the First and Second Laws as expressed in the energy and entropy balance 
equations for an unsteady process, one may obtain the balance equation for exergy. 
This derivation is commonly provided in undergraduate thermodynamics textbooks. 
The First Law for a control volume can be expressed as

     
Q W m h V gz m h V gzk + + + +



 - + +



∑ ∑ & &

1
2

1
2

2 2

in
 =∑

out

&ECV

 	
(1.73)
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where &m, h, and Ecv refer to the mass flow rate, enthalpy and time rate of change of 
exergy in the control volume, respectively.

The corresponding form of the Second Law is

	

Q

T
ms ms S Sk

k

+ - + =∑∑ ∑& & & &
in out

gen CV

	

(1.74)

Combining these equations yields

	

1 0 2

2

1
2

1
2

-

 + + + +( )

- + +

∑ ∑T

T
Q W m h V gz

m h V

k &

&

in

ggz T S
d

dt
E T S( ) - = -∑ out

gen CV0 0& ( )
	

(1.75)

If we define a specific “flow exergy,” y, in the same sense that enthalpy represents a 
“flow energy,” then the exergy balance equation simplifies to

         
1 0

0 0-

 + + + - -∑∑ T

T
Q W P V m m Tk ( )& & &ψ ψin out gen

&& &S X=∑ CV
 	

(1.76)

where

	
ψ φ= + -( )P P v0 	 (1.77)

and f is the specific exergy, (e - e0) + P0 (v - v0) - T0 (S - S0). Identifying the first two 
terms on the left side of Equation 1.76 as the transfer of exergy due to work and heat 
transfer, respectively, and the third and fourth terms as exergy transfer due to mass 
flow, the exergy balance equation for a control volume reduces to

	 in out gen CV& & & &X X T S X- - =0 	 (1.78)

where “in” and “out” terms represent the flow of exergy into and out of the control 
volume.

In addition to its role in determining the direction of natural processes and a 
criterion for thermodynamic equilibrium, the Second Law can also characterize the 
efficiency of engineering devices (Bejan, 1996). Carnot (1960, English translation 
from French by R.H. Thurston) conceived and developed the Second Law to account 
for the performance and limits of heat engines. Isentropic efficiency characterizes 
the performance of various engineering devices, such as turbines and compressors. 
In the context of exergy, the Second Law defines a more general measure of perfor-
mance that applies not only to turbines and compressors, but heat exchangers, mix-
ing processes, and other devices. A measure of performance for any engineering 
device should compare its efficiency, relative to the efficiency of an ideal device 
(no irreversible losses) operating under the same conditions. This measure of 
performance is called the “Second Law efficiency” or effectiveness, which can be 
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defined as follows,

	

ηII
des

supp

≡ -1
&

&
X

X 	
(1.79)

where the subscripts “des” and “supp” refer to destroyed and supplied, respectively.
Past literature has interpreted this measure of performance as a “rational effi-

ciency” of a process or device (Müller and Ruggeri, 1998). Essentially, the effective-
ness of any process equals the fractional change in the exergy relative to the exergy 
supplied. The concept of effectiveness applies to any thermophysical process, includ-
ing heat engines, refrigerators, heat exchangers, mixing, throttling, and so forth. It is 
always bounded between zero and one.

The Second Law of Thermodynamics will: (i) determine the direction of change 
for spontaneous, natural processes; (ii) establish criteria for equilibrium in thermo-
dynamic systems; and (iii) provide the theoretical limits for the performance of engi-
neering systems and processes. Items (i) and (ii) identify the role of the Second Law 
as a limiter in abstracting the differences in response of different materials via the 
constitutive relations. Item (iii) identifies the role of the Second Law enumerated by 
the concept of effectiveness, as a limiter to indicate how a system relaxes to equilib-
rium conditions with its surroundings while producing or consuming work.

1.5	 Formulation of Entropy Production	
and Exergy Destruction

In the previous section, formulations of entropy transport and the Second Law were 
developed. In those equations, entropy production and exergy destruction were key 
parameters that characterized the efficiency of the thermal system or device. In this 
section, detailed expressions for these parameters will be developed, from which 
design methodologies can be established to reduce and minimize entropy produc-
tion, thereby optimizing system performance.

1.5.1	 Closed System

From Section 1.3.1, for a closed system exchanging energy with its surroundings 
through work and heat transfer, the exergy balance equation can be expressed as

	

1 0
0 0-


 + + - =T

T
Q W P V T S X( )

. . .

gen

	
(1.80)

Substitution for the heat flow and work term (relating compression/expansion work 
to pressure and change of volume) leads to

	

1 0
0 0-


 + - + - =T

T
U PV PV P V T S X( )

. . . . . .

gen

	
(1.81)

Using thermodynamic relations for the exergy gradients leads to the following simi-
lar result as Equation 1.33,

	
- = - ∂

∂
- ∂
∂

T S X
X

U
U

X

V
V0 gen

& & & &

	
(1.82)
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which is similar to results derived previously for the convexity property of exergy in 
Section 1.3.1. The convexity property of exergy is intrinsically linked with the Second Law.

1.5.2	 Linear Advection Equation (without Diffusion)

Entropy is transported throughout a problem domain through advection of scalar 
quantities like fluid momentum and internal energy. For example, scalar transport 
of fluid momentum leads to frictional irreversibilities, while transport of internal 
energy involves convective heat transfer and thermal irreversibilities. In this section, 
the exergy balance equation is developed with respect to scalar transport of a general 
scalar quantity, h(x,t). The governing equation for the one-dimensional scalar advec-
tion equation without diffusion is given by

	

∂
∂
+ ∂
∂
=η

t

f

x
0

	
(1.83)

which represents pure advection and f(h) equals the “flux of h.”
According to the entropy concavity principle, the corresponding balance of 

entropy is given by

	

∂
∂
- ′ ∂
∂
≥S

t
S

t

η
0

	
(1.84)

Substituting for the second term using Equation 1.83 and applying the chain rule,

	

∂
∂
+ ′ ′ ∂

∂
≥S

t
S f

x
η

0
	

(1.85)

The one-dimensional form of the entropy transport equation can also be expressed as

	
gen

&S
S

t

F

x
= ∂
∂
+ ∂
∂ 	

(1.86)

where F represents the “transfer of entropy with h.” It is a term arising from pure 
convective transport of h. Subtracting Equation 1.86 from Equation 1.85 and using 
the chain rule for ∂F/∂x gives

	
( ' ' ')F S f

x
- ∂

∂
≥η 0

	
(1.87)

The strict equality must be enforced to avoid violation of the Second Law, so a 
compatibility condition, ′ = ′ ′F S f , is obtained as a constitutive restriction required 
by the Second Law. This result implies

	

∂
∂
+ ∂
∂
=S

t

F

x
0

	
(1.88)

and it follows that &Sgen = 0. This result is well known that reversible processes 
have zero entropy generation, although the previous derivation shows an additional 
requirement of compatibility between derivatives of entropy and its flux, F.
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The corresponding balance of exergy equation is given by

	

∂
∂
- ′ ∂

∂
≤X

t
X

t
η

0.
	

(1.89)

Substituting for the second term using Equation 1.83 and applying the chain rule,

	

∂
∂
+ ′ ′ ∂

∂
≥X

t
X f

x

η
0

	
(1.90)

When the balance of exergy is written in an analogous form as entropy transport,

	
gen&X

X

t

G

x
= ∂
∂
+ ∂
∂ 	

(1.91)

where G represents the “transfer of exergy with h.” It is a term resulting from the 
purely convective transfer of h across boundaries. Subtracting Equation 1.91 from 
Equation 1.90 and using the chain rule for ∂G/∂x gives

	
( ' ' ')G X f

x
- ∂

∂
≤η 0

	
(1.92)

In this case, the strict equality to satisfy the Second Law leads to an exergy com-
patibility condition, ′ = ′ ′G X f , which is a constitutive restriction required by the 
Second Law. Also, it leads to

	

∂
∂
+ ∂
∂
=X

t

G

x
0

	
(1.93)

and it follows that &Xdes = 0. In the next section, the previous procedure will be 
extended to scalar advection, including diffusion.

1.5.3	 Linear Advection Equation (with Diffusion)

In this section, a similar procedure will be used to derive the exergy destruction rate 
corresponding to scalar advection with diffusion. The governing equation for one-
dimensional advection with diffusion is

	

∂
∂
+ ∂
∂
= ∂
∂

η η
t

f

x
D

x

2

2 	
(1.94)

where F = ch and c equals a constant advection velocity. The variable D refers to a 
diffusion coefficient. The corresponding balance of exergy is given by

	

∂
∂
- ′ ∂

∂
≤X

t
X

t

η
0

	
(1.95)
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Substituting for the second term using Equation 1.94 gives

	

∂
∂
+ ′ ∂

∂
- ′ ∂

∂
≤X

t
X

f

x
DX

x

2

2
0

η
	

(1.96)

Applying the compatibility condition and the chain rule,

	

∂
∂
+ ∂
∂
- ∂
∂

′ ∂
∂






+ ∂

∂



 ′′X

t

G

x
D

x
X

x
D

x
X

η η 2

dees&
1 24 34

X

≤ 0

	

(1.97)

where G = cX. The exergy destruction term is labeled because it is the only term that 
must be nonnegative. To preclude any violation of the Second Law, the strict equality 
must be enforced because the magnitude of all terms on the left side is not known  
beforehand. Because X is convex in h, then X″ < 0. Hence, we arrive at two expres-
sions for the Second Law corresponding to scalar advection with diffusion:

	
des&X D

x
X= ∂

∂



 ′′

2η

	
(1.98)

and

	

des&X D
x

X
x

X

t

F

x
= ∂
∂

′ ∂
∂






- ∂
∂
+ ∂
∂







η

	

(1.99)

When imposing the principle of nonnegative exergy destruction, the first expression 
represents a constitutive restriction on the diffusion parameter: D ≥ 0 . The second 
expression represents the true exergy balance equation for this process. The third 
term contains the effects of the diffusive flux (diffusive transport of h such as fluid 
friction or heat conduction).

1.5.4	 Navier–Stokes Equations

Since the Euler equations represent inviscid fluid motion, they are limiting cases of 
the Navier–Stokes equations, which describe the dynamic motion of a viscous, heat-
conducting fluid. The Navier–Stokes equations can be expressed in the following 
tensor form,

	

∂
∂
+
∂
∂
=ρ ρ

t

V

x
j

j

0

	
(1.100)

	

∂
∂
+ ∂
∂

+ - - =E

t x
EV PV V q

j
j j ji i j[ ]τ 0

	
(1.101)
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∂
∂
+ ∂
∂

+ - - =E

t x
EV PV V q

j
j j ji i j[ ]τ 0

	
(1.102)

where Vj refers to the velocity component in the j-coordinate direction and where 
E u V= +ρ ρ1

2
2 represents the total energy (internal plus kinetic energy).

These equations are underdetermined, because they contain more unknowns 
than equations. Consequently, additional information is required. The constitutive 
relations provide the additional closure information. Typically, these include the 
ideal gas law, P RT= ,ρ  the assumption of a thermally perfect gas (cv depends only 
on temperature, T), and Fourier’s relation for heat conduction,

	

q k
T

xj
j

= - ∂
∂

	
(1.103)

Also, the following constitutive relations will be used for the viscous stress tensor of 
a Newtonian fluid,

	

τ µ λ δji
j

i

i

j

j

j
ji

V

x

V

x

V

x
=

∂
∂
+ ∂
∂
+
∂
∂

















 	

(1.104)

where d ij is the Kronecker delta function. The entropy transport equation associated 
with processes modeled by the Navier–Stokes equations is

	
gen

&S
S

t

F

x x

q

T
j

j j

j= ∂
∂
+
∂
∂
+ ∂
∂





 	
(1.105)

where S s= ρ  and F sVj j= ρ . Because one more unknown has been added (specific 
entropy, s), another constitutive relation is needed, namely, the functional relation 
between entropy and the other field variables. This relation must satisfy the concav-
ity property of entropy. For an ideal gas, the entropy functional (from thermodynam-
ics; written in nondimensional form) is

	
s T T( ) ln lnρ

γ
ρ, =

-
-1

1  	
(1.106)

where g  is the ratio of specific heats.
Because the state variables include mass, momentum, and total energy, it is conve-

nient to define an algebraic state vector, q V V V ET ≡ , , , ,{ }ρ ρ ρ ρ ρ1 2 3 , so that the entire 
set of conservation equations reduces to

	

∂
∂
+ ∂
∂
=q

t

f

x
k

k

0
 	

(1.107)
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where f is an algebraic flux vector. The functional relation for the entropy is S = S(q), 
and the concavity property is expressed as

	

S S
S

q
q q0

0

0 0- - ∂
∂
⋅ - ≥( )

	
(1.108)

where equality holds if and only if q = q0. The transient generalization of Equation 
1.108 is the following extension of Equation 1.53 for the state variables:

	

∂
∂
- ∂
∂
⋅ ∂
∂
≥S

t

S

q

q

t
0

	
(1.109)

Replacing ∂q/∂t and rearranging terms yields the following entropy generation 
rate:

	
gen

&S
T

V

x

q

T

T

x
ji i

j

j

j

= ∂
∂
- ∂

∂
τ

2

	
(1.110)

This result may be obtained by other means (Müller, 1985), but the approach here 
aims to emphasize the intrinsic connection between entropy concavity and the 
entropy generation equation in the Second Law of Thermodynamics.

Given the Fourier relation and the formula for the viscous stress tensor, the 
Second Law requires that

	
k ≥ ≥ + ≥0 0 02

3µ λ µ
	

(1.111)

These results are well known, and they have been documented in past literature 
dealing with thermodynamics and kinetic theory (Bird, 1976, 1994; Chapman and 
Cowling, 1990; Müller and Ruggeri, 1998). The origin of the inequalities arrives 
from the mathematical property of entropy concavity, as a function of the field vari-
ables. Two expressions were obtained for the entropy generation: one that places 
restrictions on the constitutive relations; the other represents the entropy transport 
equation, Equation 1.105. The corresponding exergy destruction can be obtained by 
the Gouy–Stodola theorem. It may also be obtained directly by defining exergy from 
the concavity of entropy and then constructing the appropriate balance equation.

Consider the one-dimensional Navier–Stokes equations with the flux vectors 
separated into convective and dissipative parts as follows:

	

∂
∂
+ ∂
∂
+ ∂
∂
=q

t

f

x

f

x

v

0
	

(1.112)

where

	

f

V q

V

x

q k
T

x

v = -
- +

















= ∂
∂

= - ∂
∂

0
4
3

τ
τ

τ µ

	

(1.113)
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From Equation 1.106 and S s= ρ , the row vector of entropy derivatives is

	
S s

V
T

V
T Tq, , ,= + -

-
-







2

2 1
1γ

γ 	
(1.114)

Then the exergy can be written as

	
X q T S S S q qq( ) [ ( )]≡ - - , ⋅ -0 0 00 	

(1.115)

where the subscript comma notation refers to differentiation.
The exergy balance equation and exergy destruction rate can be obtained by 

starting with the convexity relation for exergy in Section 1.3.1, and substituting for 
the time derivatives to give

	

∂
∂
- , ⋅ ∂

∂
= ∂
∂
+ , ⋅ ∂

∂
+ ∂
∂







X

t
X

q

t

X

t
X

f

x

f

xq q

v

	

(1.116)

where X T S Sq q q, = , - , .0 0
( )  Invoking the chain rule and the corresponding compat-

ibility condition leads to

	
X

fS

q

q

x
G

q

x

G

xq q, ⋅
∂
⋅ ∂
∂
= , ⋅ ∂

∂
= ∂
∂ 	

(1.117)

Also, note that

	

X
f

x
T S

f

x
T S

f

xq

v

q

v

q

v

, ⋅ ∂
∂
= , ⋅ ∂

∂
- , ⋅ ∂

∂0 00
	

(1.118)

and

	

T S f x T s
T

x
V

q
v

0 0 0
0

0 1
0 1

0

, ⋅ = -
-
, ,






⋅ ∂
∂

-
- +

γ
γ

τ
τ qq

x
q V
















= ∂
∂

-( )τ

	

(1.119)

In addition, the following equation can be derived:

	
S

f

x x

q

T T

V

x

q

T

T

xq

v

, ⋅ ∂
∂
= ∂
∂



 -

∂
∂
+ ∂

∂
τ

2
	

(1.120)

Substituting these results into Equation 1.116 leads to

	

∂
∂
+ ∂
∂
- ∂
∂
+ ∂
∂

-








+ ∂X

t
S
U

V
x x

T
T

q
T
T

τ τ1 0 0 VV
x

T
T

q
T
x∂

- ∂
∂
=0

2
0

exergy destruction
1 2444 3444

	

(1.121)
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This identifies the exergy destruction term, and by comparison with Equation 1.110, 
note that des gen

& &X T S= 0 . The formula for the exergy destruction becomes

 	

des&X
X

t

G

x

V

x x

T

T
= - ∂

∂
+ ∂
∂






+ ∂
∂
- ∂
∂

-



τ
1 0 qq




 	

(1.122)

Because the equations of fluid flow presume local thermodynamic equilibrium, there 
is no inconsistency when applying classical thermodynamic principles as represented 
by entropy concavity and exergy convexity. These principles are mathematical prop-
erties, not limited to thermodynamics.

To apply the Second Law of Thermodynamics for availability analyses in prac-
tice requires the balance of exergy equation and a functional formula for exergy. The 
construction of the entropy and exergy balance equations has been derived with-
out specifying an entropy formula, except for the case of an ideal gas. To obtain 
the proper formula for S S= ( )ξ , general optimization principles can be applied. For 
example, Jaynes’ Maximum Entropy Principle (Jaynes, 1991; Levine and Tribus, 
1979) is based on a generalization of the Second Law, when applied to constrained 
equilibria. Kapur and Kesavan (1992) provide a comprehensive and detailed proce-
dure for generalized entropy optimization principles. If the domain of the dependent 
variable x  is known, then the Maximum Entropy Principle obtains the proper form 
of entropy for a probability distribution function that quantifies fluctuations in that 
variable about its mean value. For example, if ξ ∈ ,∞[ )0 , then the MaxEnt principle 
prescribes S = lnξ . If the dependent variable u ∈ -∞,∞( ), then MaxEnt prescribes 	

S u= - /2 22σ , where 2 12σ =  is set without loss of generality. The Second Law, in 
essence, provides a way to (i) obtain a formula for entropy, and (ii) construct the bal-
ance equation for entropy (Liu, 1972; Müller, 1967).

The mathematical property of entropy concavity has served multiple purposes, 
including restricting the types of constitutive relations allowed for modeling of real-
world processes. The Second Law is a powerful concept that determines how physi-
cal processes can be modeled, so that mathematical models reflect physical reality. 
This chapter has developed formulae for the balance of entropy and exergy, as 
required to enforce the restrictions prescribed by the Second Law. The advantage of 
using exergy balances (instead of entropy) is that they provide a concept that unifies 
the First and Second Laws into a single principle. This unified approach provides the 
basis for constructing a single metric across the spectrum of possible thermophysical 
systems and processes.
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